Journal Article
. 2015 Jan; 3(1):2.
doi: 10.1186/s40425-014-0043-z.

Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma

Weiqing Jing 1 Jill A Gershan 1 James Weber 1 Dominique Tlomak 1 Laura McOlash 1 Catherine Sabatos-Peyton 2 Bryon D Johnson 1 
  • PMID: 25614821
  •     65 References
  •     46 citations


Background: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity.

Methods: To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4.

Results: Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies.

Conclusions: These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies.

Keywords: 2B4; Blockade; CTLA4; Immune checkpoint proteins; LAG-3; Low dose whole body irradiation; Myeloma; PD-L1; TIM-3.

The three main stumbling blocks for anticancer T cells.
Lukas Baitsch, Silvia A Fuertes-Marraco, +2 authors, Daniel E Speiser.
Trends Immunol, 2012 Mar 27; 33(7). PMID: 22445288
Nivolumab plus ipilimumab in advanced melanoma.
Jedd D Wolchok, Harriet Kluger, +21 authors, Mario Sznol.
N Engl J Med, 2013 Jun 04; 369(2). PMID: 23724867    Free PMC article.
Highly Cited.
PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.
Michael A Curran, Welby Montalvo, Hideo Yagita, James P Allison.
Proc Natl Acad Sci U S A, 2010 Feb 18; 107(9). PMID: 20160101    Free PMC article.
Highly Cited.
The complex role of B7 molecules in tumor immunology.
Barbara Seliger, Francesco M Marincola, Soldano Ferrone, Hinrich Abken.
Trends Mol Med, 2008 Nov 07; 14(12). PMID: 18986838    Free PMC article.
A subpopulation of malignant CD34+CD138+B7-H1+ plasma cells is present in multiple myeloma patients.
Klaudia Kuranda, Céline Berthon, +5 authors, Bruno Quesnel.
Exp Hematol, 2009 Dec 02; 38(2). PMID: 19948206
Tim-1 regulates Th2 responses in an airway hypersensitivity model.
Miranda L Curtiss, Jacob V Gorman, +9 authors, Suzanne L Cassel.
Eur J Immunol, 2011 Dec 07; 42(3). PMID: 22144095    Free PMC article.
Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade.
Ines Pires da Silva, Anne Gallois, +5 authors, Nina Bhardwaj.
Cancer Immunol Res, 2014 May 06; 2(5). PMID: 24795354    Free PMC article.
Highly Cited.
Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer.
Junko Matsuzaki, Sacha Gnjatic, +9 authors, Kunle Odunsi.
Proc Natl Acad Sci U S A, 2010 Apr 14; 107(17). PMID: 20385810    Free PMC article.
Highly Cited.
Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model.
Ping Yu, Jason C Steel, +2 authors, Thomas A Waldmann.
Clin Cancer Res, 2010 Oct 07; 16(24). PMID: 20924130    Free PMC article.
Galectin-9 in tumor biology: a jack of multiple trades.
Roy Heusschen, Arjan W Griffioen, Victor L Thijssen.
Biochim Biophys Acta, 2013 May 08; 1836(1). PMID: 23648450
Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults.
Jaikumar Duraiswamy, Chris C Ibegbu, +11 authors, Rafi Ahmed.
J Immunol, 2011 Mar 09; 186(7). PMID: 21383243    Free PMC article.
Highly Cited.
Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates.
Julie R Brahmer, Charles G Drake, +17 authors, Suzanne L Topalian.
J Clin Oncol, 2010 Jun 03; 28(19). PMID: 20516446    Free PMC article.
Highly Cited.
PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8⁺ T cells induced by melanoma vaccines.
Julien Fourcade, Zhaojun Sun, +14 authors, Hassane M Zarour.
Cancer Res, 2013 Dec 18; 74(4). PMID: 24343228    Free PMC article.
Highly Cited.
Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance.
Melissa M Berrien-Elliott, Stephanie R Jackson, +6 authors, Ryan M Teague.
Cancer Res, 2012 Nov 29; 73(2). PMID: 23188506    Free PMC article.
Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4.
P Waterhouse, J M Penninger, +6 authors, T W Mak.
Science, 1995 Nov 10; 270(5238). PMID: 7481803
Highly Cited.
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
Suzanne L Topalian, F Stephen Hodi, +27 authors, Mario Sznol.
N Engl J Med, 2012 Jun 05; 366(26). PMID: 22658127    Free PMC article.
Highly Cited.
Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma.
Qiang Gao, Xiao-Ying Wang, +9 authors, Jia Fan.
Clin Cancer Res, 2009 Feb 04; 15(3). PMID: 19188168
Highly Cited.
Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade.
William H D Hallett, Weiqing Jing, William R Drobyski, Bryon D Johnson.
Biol Blood Marrow Transplant, 2011 May 04; 17(8). PMID: 21536144
Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy.
Sara M Mangsbo, Linda C Sandin, +3 authors, Thomas H Tötterman.
J Immunother, 2010 May 07; 33(3). PMID: 20445343
LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses.
Feng Xu, Jing Liu, +6 authors, Fuchu He.
Cancer Res, 2014 Apr 29; 74(13). PMID: 24769443
Highly Cited.
Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody.
Evan J Lipson, William H Sharfman, +10 authors, Suzanne L Topalian.
Clin Cancer Res, 2012 Nov 22; 19(2). PMID: 23169436    Free PMC article.
Highly Cited.
T cell exhaustion.
E John Wherry.
Nat Immunol, 2011 Jul 09; 12(6). PMID: 21739672
Highly Cited. Review.
CTLA-4 regulates tolerance induction and T cell differentiation in vivo.
T L Walunas, J A Bluestone.
J Immunol, 1998 Apr 29; 160(8). PMID: 9558090
Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity.
William L Redmond, Stefanie N Linch, Melissa J Kasiewicz.
Cancer Immunol Res, 2014 Apr 30; 2(2). PMID: 24778278    Free PMC article.
Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
Bertrand Allard, Sandra Pommey, Mark J Smyth, John Stagg.
Clin Cancer Res, 2013 Aug 29; 19(20). PMID: 23983257
Highly Cited.
Inhibitory B7-family molecules in the tumour microenvironment.
Weiping Zou, Lieping Chen.
Nat Rev Immunol, 2008 May 27; 8(6). PMID: 18500231
Highly Cited. Review.
Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation than "Exhaustion" of Human CD8 T Cells.
Amandine Legat, Daniel E Speiser, +2 authors, Silvia A Fuertes Marraco.
Front Immunol, 2014 Jan 07; 4. PMID: 24391639    Free PMC article.
Highly Cited.
Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.
Rohit Mittal, Maylene Wagener, +6 authors, Mandy L Ford.
PLoS One, 2014 May 07; 9(5). PMID: 24796533    Free PMC article.
Molecular and transcriptional basis of CD4⁺ T cell dysfunction during chronic infection.
Alison Crawford, Jill M Angelosanto, +4 authors, E John Wherry.
Immunity, 2014 Feb 18; 40(2). PMID: 24530057    Free PMC article.
Highly Cited.
Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors.
Shin Foong Ngiow, Bianca von Scheidt, +3 authors, Mark J Smyth.
Cancer Res, 2011 Mar 25; 71(10). PMID: 21430066
Highly Cited.
Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors.
Hyo Jin Park, Anthony Kusnadi, +5 authors, Sang-Jun Ha.
Cell Immunol, 2012 Nov 06; 278(1-2). PMID: 23121978
The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.
Don M Benson, Courtney E Bakan, +14 authors, Michael A Caligiuri.
Blood, 2010 May 13; 116(13). PMID: 20460501    Free PMC article.
Highly Cited.
Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4.
T Takahashi, T Tagami, +5 authors, S Sakaguchi.
J Exp Med, 2000 Jul 19; 192(2). PMID: 10899917    Free PMC article.
Highly Cited.
Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer.
Takeo Nomi, Masayuki Sho, +8 authors, Yoshiyuki Nakajima.
Clin Cancer Res, 2007 Apr 04; 13(7). PMID: 17404099
Highly Cited.
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.
Kaori Sakuishi, Lionel Apetoh, +3 authors, Ana C Anderson.
J Exp Med, 2010 Sep 08; 207(10). PMID: 20819927    Free PMC article.
Highly Cited.
Tim-3: an emerging target in the cancer immunotherapy landscape.
Ana C Anderson.
Cancer Immunol Res, 2014 May 06; 2(5). PMID: 24795351
Highly Cited. Review.
Inhibitory receptors on lymphocytes: insights from infections.
Pamela M Odorizzi, E John Wherry.
J Immunol, 2012 Mar 24; 188(7). PMID: 22442493    Free PMC article.
Improved survival with ipilimumab in patients with metastatic melanoma.
F Stephen Hodi, Steven J O'Day, +26 authors, Walter J Urba.
N Engl J Med, 2010 Jun 08; 363(8). PMID: 20525992    Free PMC article.
Highly Cited.
PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine.
Jacalyn Rosenblatt, Brett Glotzbecker, +10 authors, David Avigan.
J Immunother, 2011 May 18; 34(5). PMID: 21577144    Free PMC article.
Highly Cited.
IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma.
Zhi-Zhang Yang, Deanna M Grote, +5 authors, Stephen M Ansell.
J Clin Invest, 2012 Mar 20; 122(4). PMID: 22426209    Free PMC article.
Highly Cited.
Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies.
Karl S Peggs, Sergio A Quezada, +2 authors, James P Allison.
J Exp Med, 2009 Jul 08; 206(8). PMID: 19581407    Free PMC article.
Highly Cited.
Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients.
Lukas Baitsch, Petra Baumgaertner, +9 authors, Daniel E Speiser.
J Clin Invest, 2011 May 11; 121(6). PMID: 21555851    Free PMC article.
Highly Cited.
Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells.
Verena Schlaphoff, Sebastian Lunemann, +9 authors, Heiner Wedemeyer.
PLoS Pathog, 2011 Jun 01; 7(5). PMID: 21625589    Free PMC article.
The B7 family revisited.
Rebecca J Greenwald, Gordon J Freeman, Arlene H Sharpe.
Annu Rev Immunol, 2005 Mar 18; 23. PMID: 15771580
Highly Cited. Review.
Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells.
Ana C Anderson, David E Anderson, +11 authors, David A Hafler.
Science, 2007 Nov 17; 318(5853). PMID: 18006747
Highly Cited.
Molecular signature of CD8+ T cell exhaustion during chronic viral infection.
E John Wherry, Sang-Jun Ha, +7 authors, Rafi Ahmed.
Immunity, 2007 Oct 24; 27(4). PMID: 17950003
Highly Cited.
PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines.
Weiyi Peng, Chengwen Liu, +8 authors, Patrick Hwu.
Cancer Res, 2012 Aug 24; 72(20). PMID: 22915761    Free PMC article.
Highly Cited.
PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.
Alena Gros, Paul F Robbins, +13 authors, Steven A Rosenberg.
J Clin Invest, 2014 Mar 29; 124(5). PMID: 24667641    Free PMC article.
Highly Cited.
Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3.
Maria Bettini, Andrea L Szymczak-Workman, +6 authors, Dario A A Vignali.
J Immunol, 2011 Aug 30; 187(7). PMID: 21873518    Free PMC article.
Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment.
Rinke Bos, Kristi L Marquardt, Jocelyn Cheung, Linda A Sherman.
Oncoimmunology, 2012 Dec 18; 1(8). PMID: 23243587    Free PMC article.
The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications.
Anna Maria Di Giacomo, Maurizio Biagioli, Michele Maio.
Semin Oncol, 2010 Nov 16; 37(5). PMID: 21074065
Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors--response.
Jaikumar Duraiswamy, Gordon J Freeman, George Coukos.
Cancer Res, 2014 Jan 11; 74(2). PMID: 24408920
Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape.
Seng-Ryong Woo, Meghan E Turnis, +18 authors, Dario A A Vignali.
Cancer Res, 2011 Dec 22; 72(4). PMID: 22186141    Free PMC article.
Highly Cited.
Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients.
Julien Fourcade, Zhaojun Sun, +6 authors, Hassane M Zarour.
J Exp Med, 2010 Sep 08; 207(10). PMID: 20819923    Free PMC article.
Highly Cited.
Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma.
Stephen R Goding, Kyle A Wilson, +7 authors, Paul Andrew Antony.
J Immunol, 2013 Mar 29; 190(9). PMID: 23536636    Free PMC article.
Highly Cited.
T-cell exhaustion: characteristics, causes and conversion.
John S Yi, Maureen A Cox, Allan J Zajac.
Immunology, 2010 Mar 06; 129(4). PMID: 20201977    Free PMC article.
Highly Cited. Review.
Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas.
Muhammad Baghdadi, Hiroko Nagao, +4 authors, Masahisa Jinushi.
Cancer Immunol Immunother, 2012 Nov 13; 62(4). PMID: 23143694
PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells.
Yoshiko Iwai, Seigo Terawaki, Tasuku Honjo.
Int Immunol, 2004 Dec 22; 17(2). PMID: 15611321
Highly Cited.
Cutting edge: Regulation of CD8(+) T cell proliferation by 2B4/CD48 interactions.
T Kambayashi, E Assarsson, B J Chambers, H G Ljunggren.
J Immunol, 2001 Dec 12; 167(12). PMID: 11739483
Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway.
Jizhong Liu, Abdelbasset Hamrouni, +5 authors, Bruno Quesnel.
Blood, 2007 Mar 17; 110(1). PMID: 17363736
Highly Cited.
B cell induction of IL-13 expression in NK cells: role of CD244 and SLAM-associated protein.
Ning Gao, Pamela Schwartzberg, +2 authors, Dorothy Yuan.
J Immunol, 2006 Feb 24; 176(5). PMID: 16493031
Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia.
Qing Zhou, Meghan E Munger, +8 authors, Bruce R Blazar.
Blood, 2011 Mar 10; 117(17). PMID: 21385853    Free PMC article.
Highly Cited.
Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma.
Tyler R Simpson, Fubin Li, +11 authors, Sergio A Quezada.
J Exp Med, 2013 Jul 31; 210(9). PMID: 23897981    Free PMC article.
Highly Cited.
CD48 as a novel molecular target for antibody therapy in multiple myeloma.
Naoki Hosen, Hiroyoshi Ichihara, +17 authors, Haruo Sugiyama.
Br J Haematol, 2011 Nov 22; 156(2). PMID: 22098460
Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma.
Tyce J Kearl, Weiqing Jing, Jill A Gershan, Bryon D Johnson.
J Immunol, 2013 Apr 26; 190(11). PMID: 23616570    Free PMC article.
Immune checkpoint inhibitors: a new frontier in bladder cancer.
Max Kates, Nikolai A Sopko, +3 authors, Trinity J Bivalacqua.
World J Urol, 2015 Oct 22; 34(1). PMID: 26487055
NK cells and cancer: you can teach innate cells new tricks.
Maelig G Morvan, Lewis L Lanier.
Nat Rev Cancer, 2015 Dec 24; 16(1). PMID: 26694935
Highly Cited. Review.
Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential.
Gregory T Wurz, Chiao-Jung Kao, Michael W DeGregorio.
Ther Adv Med Oncol, 2016 Jan 12; 8(1). PMID: 26753003    Free PMC article.
Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.
Camille Guillerey, Kyohei Nakamura, +2 authors, Mark J Smyth.
Cell Mol Life Sci, 2016 Jan 24; 73(8). PMID: 26801219
Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas.
Jennifer E Kim, Mira A Patel, +23 authors, Michael Lim.
Clin Cancer Res, 2016 Jul 01; 23(1). PMID: 27358487    Free PMC article.
Highly Cited.
Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer.
Jin S Im, Amanda C Herrmann, +4 authors, Roman Perez-Soler.
PLoS One, 2016 Jul 29; 11(7). PMID: 27467256    Free PMC article.
Soluble PD-L1: A biomarker to predict progression of autologous transplantation in patients with multiple myeloma.
Shang-Yi Huang, Hsiu-Hsia Lin, +8 authors, Hwei-Fang Tien.
Oncotarget, 2016 Aug 28; 7(38). PMID: 27566569    Free PMC article.
Immune biomarkers of treatment failure for a patient on a phase I clinical trial of pembrolizumab plus radiotherapy.
Gregory S Alexander, Joshua D Palmer, +8 authors, Bo Lu.
J Hematol Oncol, 2016 Sep 25; 9(1). PMID: 27663515    Free PMC article.
T cells in multiple myeloma display features of exhaustion and senescence at the tumor site.
Claudia Zelle-Rieser, Shanmugapriya Thangavadivel, +5 authors, Karin Jöhrer.
J Hematol Oncol, 2016 Nov 05; 9(1). PMID: 27809856    Free PMC article.
The emerging role of immune checkpoint inhibition in malignant lymphoma.
Ida Hude, Stephanie Sasse, Andreas Engert, Paul J Bröckelmann.
Haematologica, 2016 Nov 26; 102(1). PMID: 27884973    Free PMC article.
Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy.
Eszter Lázár-Molnár, Lisa Scandiuzzi, +7 authors, Steven C Almo.
EBioMedicine, 2017 Feb 25; 17. PMID: 28233730    Free PMC article.
LAG3 (CD223) as a cancer immunotherapy target.
Lawrence P Andrews, Ariel E Marciscano, Charles G Drake, Dario A A Vignali.
Immunol Rev, 2017 Mar 05; 276(1). PMID: 28258692    Free PMC article.
Highly Cited. Review.
Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies.
Pauline Gravelle, Barbara Burroni, +7 authors, Camille Laurent.
Oncotarget, 2017 Apr 14; 8(27). PMID: 28402953    Free PMC article.
Immune checkpoint blockade: the role of PD-1-PD-L axis in lymphoid malignancies.
Cristina Ilcus, Cristina Bagacean, +5 authors, Mihnea Zdrenghea.
Onco Targets Ther, 2017 May 13; 10. PMID: 28496333    Free PMC article.
Adoptive cell therapy using PD-1+ myeloma-reactive T cells eliminates established myeloma in mice.
Weiqing Jing, Jill A Gershan, +5 authors, Bryon D Johnson.
J Immunother Cancer, 2017 Jun 24; 5. PMID: 28642819    Free PMC article.
Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications.
Jessica Roelands, Peter J K Kuppen, +6 authors, Wouter Hendrickx.
Int J Mol Sci, 2017 Oct 25; 18(10). PMID: 29064420    Free PMC article.
Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT.
Elizabeth K Duperret, Megan C Wise, +8 authors, David B Weiner.
Mol Ther, 2017 Dec 19; 26(2). PMID: 29249395    Free PMC article.
[Systemic immune checkpoint inhibition : A promising treatment for urological tumors?]
F C Roos, C Becker, +2 authors, Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie.
Urologe A, 2018 Mar 24; 57(5). PMID: 29569115
Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination.
Jun Gong, Thang Q Le, +2 authors, Richard Tuli.
J Immunother Cancer, 2018 Jun 06; 6(1). PMID: 29866197    Free PMC article.
Immunotherapy: A Novel Era of Promising Treatments for Multiple Myeloma.
Maria Castella, Carlos Fernández de Larrea, Beatriz Martín-Antonio.
Int J Mol Sci, 2018 Nov 18; 19(11). PMID: 30445802    Free PMC article.
Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade.
Netonia Marshall, Keino Hutchinson, +7 authors, Joshua D Brody.
Cancer Discov, 2019 Aug 04; 9(11). PMID: 31375522    Free PMC article.
Combination of checkpoint inhibitors with radiotherapy in esophageal squamous cell carcinoma treatment: A novel strategy.
Xiu-Yong Liao, Chao-Yuan Liu, +2 authors, Tao Zhang.
Oncol Lett, 2019 Oct 16; 18(5). PMID: 31612012    Free PMC article.
The Future of Combining Carbon-Ion Radiotherapy with Immunotherapy: Evidence and Progress in Mouse Models.
Takashi Shimokawa, Liqiu Ma, +2 authors, Takashi Imai.
Int J Part Ther, 2016 Jul 01; 3(1). PMID: 31772976    Free PMC article.
Myeloma: next generation immunotherapy.
Adam D Cohen.
Hematology Am Soc Hematol Educ Program, 2019 Dec 07; 2019(1). PMID: 31808859    Free PMC article.
Immunotherapy for Multiple Myeloma.
Hideto Tamura, Mariko Ishibashi, Mika Sunakawa, Koiti Inokuchi.
Cancers (Basel), 2019 Dec 18; 11(12). PMID: 31842518    Free PMC article.
Radiotherapy as a Backbone for Novel Concepts in Cancer Immunotherapy.
Julijan Kabiljo, Felix Harpain, Sebastian Carotta, Michael Bergmann.
Cancers (Basel), 2020 Jan 08; 12(1). PMID: 31905723    Free PMC article.
The challenges of checkpoint inhibition in the treatment of multiple myeloma.
Barry Paul, Shuqi Kang, Zhihong Zheng, Yubin Kang.
Cell Immunol, 2018 Oct 22; 334. PMID: 30342750    Free PMC article.
Immunotherapy of multiple myeloma.
Simone A Minnie, Geoffrey R Hill.
J Clin Invest, 2020 Mar 10; 130(4). PMID: 32149732    Free PMC article.
Low-Dose Total Body Irradiation Can Enhance Systemic Immune Related Response Induced by Hypo-Fractionated Radiation.
Jing Liu, Jie Zhou, +10 authors, JingBo Wu.
Front Immunol, 2019 Mar 16; 10. PMID: 30873170    Free PMC article.
Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200.
Daruka Mahadevan, Mark C Lanasa, +9 authors, Leonard T Heffner.
J Immunother Cancer, 2019 Aug 25; 7(1). PMID: 31443741    Free PMC article.
Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities.
Noémie Leblay, Ranjan Maity, Fajer Hasan, Paola Neri.
Front Oncol, 2020 May 21; 10. PMID: 32432039    Free PMC article.
[Advances on PD-1/PD-L1 inhibitors in multiple myeloma].
M Shao, D H He, Z Cai.
Zhonghua Xue Ye Xue Za Zhi, 2018 Mar 22; 39(3). PMID: 29562480    Free PMC article.
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help?
Rachel E Cooke, Rachel Koldej, David Ritchie.
J Oncol, 2019 May 17; 2019. PMID: 31093282    Free PMC article.
Lymphocyte Activation Gene (LAG)-3 Is Associated With Mucosal Inflammation and Disease Activity in Ulcerative Colitis.
Stephanie M Slevin, Lucy C Garner, +18 authors, Satish Keshav.
J Crohns Colitis, 2020 Mar 18; 14(10). PMID: 32179884    Free PMC article.
New emerging targets in cancer immunotherapy: the role of LAG3.
Hannah Christina Puhr, Aysegül Ilhan-Mutlu.
ESMO Open, 2019 Jun 25; 4(2). PMID: 31231559    Free PMC article.
Immune Checkpoint Targeted Therapy in Glioma: Status and Hopes.
Yangzhi Qi, Baohui Liu, +2 authors, Qianxue Chen.
Front Immunol, 2020 Dec 18; 11. PMID: 33329549    Free PMC article.
Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach.
Mankgopo M Kgatle, Tebatso M G Boshomane, +7 authors, Mike M Sathekge.
Int J Mol Sci, 2021 May 01; 22(8). PMID: 33921181    Free PMC article.
Strategies for the Construction of Mouse Models With Humanized Immune System and Evaluation of Tumor Immune Checkpoint Inhibitor Therapy.
Wenwen Guo, Caiqin Zhang, +2 authors, Changhong Shi.
Front Oncol, 2021 May 18; 11. PMID: 33996603    Free PMC article.
Understanding LAG-3 Signaling.
Luisa Chocarro, Ester Blanco, +11 authors, David Escors.
Int J Mol Sci, 2021 Jun 03; 22(10). PMID: 34067904    Free PMC article.
5-Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell death-ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model.
Xin Hu, Weitao Que, +11 authors, Xiao-Kang Li.
Cancer Sci, 2021 May 03; 112(7). PMID: 33934440    Free PMC article.
Low-dose total body irradiation facilitates antitumoral Th1 immune responses.
Dominik Sonanini, Christoph M Griessinger, +5 authors, Manfred Kneilling.
Theranostics, 2021 Aug 03; 11(16). PMID: 34335959    Free PMC article.
Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy.
Kimiharu Takamatsu, Nobuyuki Tanaka, +21 authors, Mototsugu Oya.
Nat Commun, 2021 Sep 22; 12(1). PMID: 34545095    Free PMC article.
Tumor Microenvironment of Lymphomas and Plasma Cell Neoplasms: Broad Overview and Impact on Evaluation for Immune Based Therapies.
Sudhir Perincheri.
Front Oncol, 2021 Dec 28; 11. PMID: 34956859    Free PMC article.
Longitudinal changes of blood parameters and weight in inoperable stage III NSCLC patients treated with concurrent chemoradiotherapy followed by maintenance treatment with durvalumab.
J Guggenberger, S Kenndoff, +5 authors, F Manapov.
BMC Cancer, 2022 Mar 26; 22(1). PMID: 35331196    Free PMC article.
Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups.
Lawrence P Andrews, Hiroshi Yano, Dario A A Vignali.
Nat Immunol, 2019 Oct 16; 20(11). PMID: 31611702
The Leading Role of the Immune Microenvironment in Multiple Myeloma: A New Target with a Great Prognostic and Clinical Value.
Vanessa Desantis, Francesco Domenico Savino, +5 authors, Monica Montagnani.
J Clin Med, 2022 May 15; 11(9). PMID: 35566637    Free PMC article.