Journal Article
. 2020 Dec; 7(5):410-416.
doi: 10.1364/OPTICA.387445.

Tunable hard x-ray nanofocusing with Fresnel zone plates fabricated using deep etching

Kenan Li 1 Sajid Ali 1 Michael Wojcik 2 Vincent De Andrade 2 Xiaojing Huang 3 Hanfei Yan 3 Yong S Chu 3 Evgeny Nazaretski 3 Ajith Pattammattel 3 Chris Jacobsen 2 
  • PMID: 33294496
  •     21 References
  •     2 citations


Fresnel zone plates are widely used for x-ray nanofocusing, due to their ease of alignment and energy tunability. Their spatial resolution is limited in part by their outermost zone width dr , while their efficiency is limited in part by their thickness t zp. We demonstrate the use of Fresnel zone plate optics for x-ray nanofocusing with dr = 16 nm outermost zone width and a thickness of about t zp = 1.8 μm (or an aspect ratio of 110) with an absolute focusing efficiency of 4.7% at 12 keV, and 6.2% at 10 keV. Using partially coherent illumination at 12 keV, the zone plate delivered a FWHM focus of 46 × 60 nm at 12 keV, with the first order coherent mode in a ptychographic reconstruction showing a probe size of 16 nm FWHM. These optics were fabricated using a combination of metal assisted chemical etching and atomic layer deposition for the diffracting structures, and silicon wafer back-thinning to produce optics useful for real applications. This approach should enable new higher resolution views of thick materials, especially when energy tunability is required.

Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.
Ming Du, Chris Jacobsen.
Ultramicroscopy, 2017 Oct 27; 184(Pt A). PMID: 29073575    Free PMC article.
Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics.
Chieh Chang, Anne Sakdinawat.
Nat Commun, 2014 Jun 28; 5. PMID: 24970569
Influence of random zone positioning errors on the resolving power of Fresnel zone plates.
Christoph Pratsch, Stefan Rehbein, Stephan Werner, Gerd Schneider.
Opt Express, 2015 Jan 22; 22(25). PMID: 25606994
Hard-x-ray lensless imaging of extended objects.
J M Rodenburg, A C Hurst, +6 authors, I Johnson.
Phys Rev Lett, 2007 Mar 16; 98(3). PMID: 17358687
The correction of electron lens aberrations.
P W Hawkes.
Ultramicroscopy, 2015 May 31; 156. PMID: 26025209
TomoPy: a framework for the analysis of synchrotron tomographic data.
Dogˇa Gürsoy, Francesco De Carlo, Xianghui Xiao, Chris Jacobsen.
J Synchrotron Radiat, 2014 Sep 02; 21(Pt 5). PMID: 25178011    Free PMC article.
Highly Cited.
Zone-doubling technique to produce ultrahigh-resolution x-ray optics.
K Jefimovs, J Vila-Comamala, +3 authors, C David.
Phys Rev Lett, 2008 Feb 01; 99(26). PMID: 18233580
Effect of tilt on circular zone plate performance.
Sajid Ali, Chris Jacobsen.
J Opt Soc Am A Opt Image Sci Vis, 2020 Mar 03; 37(3). PMID: 32118920    Free PMC article.
High-resolution scanning x-ray diffraction microscopy.
Pierre Thibault, Martin Dierolf, +3 authors, Franz Pfeiffer.
Science, 2008 Jul 19; 321(5887). PMID: 18635796
Highly Cited.
Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrors.
Kazuto Yamauchi, Hidekazu Mimura, +13 authors, Tetsuya Ishikawa.
J Phys Condens Matter, 2011 Sep 17; 23(39). PMID: 21921317
X-ray focusing with efficient high-NA multilayer Laue lenses.
Saša Bajt, Mauro Prasciolu, +23 authors, Christian E Hamm.
Light Sci Appl, 2019 Mar 07; 7. PMID: 30839543    Free PMC article.
Nanoscale x-ray imaging of circuit features without wafer etching.
Junjing Deng, Young Pyo Hong, +7 authors, Chris Jacobsen.
Phys Rev B, 2017 Jul 29; 95(10). PMID: 28752135    Free PMC article.
Illumination for coherent soft X-ray applications: the new X1A beamline at the NSLS.
B Winn, H Ade, +16 authors, H Zhang.
J Synchrotron Radiat, 2006 Apr 13; 7(Pt 6). PMID: 16609227
Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching.
Matt DeJarld, Jae Cheol Shin, +4 authors, Xiuling Li.
Nano Lett, 2011 Nov 05; 11(12). PMID: 22049924
Real space soft x-ray imaging at 10 nm spatial resolution.
W Chao, P Fischer, +3 authors, P Naulleau.
Opt Express, 2012 Apr 27; 20(9). PMID: 22535070
Design and performance of a scanning ptychography microscope.
E Nazaretski, X Huang, +12 authors, Y S Chu.
Rev Sci Instrum, 2014 Apr 03; 85(3). PMID: 24689592
Electron ptychography of 2D materials to deep sub-ångström resolution.
Yi Jiang, Zhen Chen, +9 authors, David A Muller.
Nature, 2018 Jul 20; 559(7714). PMID: 30022131
Probe retrieval in ptychographic coherent diffractive imaging.
Pierre Thibault, Martin Dierolf, +2 authors, Franz Pfeiffer.
Ultramicroscopy, 2009 Feb 10; 109(4). PMID: 19201540
A fast sinc function gridding algorithm for fourier inversion in computer tomography.
J D O'Sullivan.
IEEE Trans Med Imaging, 1985 Jan 01; 4(4). PMID: 18243972
High resolution double-sided diffractive optics for hard X-ray microscopy.
Istvan Mohacsi, Ismo Vartiainen, +8 authors, Christian David.
Opt Express, 2015 Apr 04; 23(2). PMID: 25835837
Reconstructing state mixtures from diffraction measurements.
Pierre Thibault, Andreas Menzel.
Nature, 2013 Feb 08; 494(7435). PMID: 23389541
Correction of the X-ray wavefront from compound refractive lenses using 3D printed refractive structures.
Vishal Dhamgaye, David Laundy, +2 authors, Kawal Sawhney.
J Synchrotron Radiat, 2020 Nov 05; 27(Pt 6). PMID: 33147177    Free PMC article.
Upscaling X-ray nanoimaging to macroscopic specimens.
Ming Du, Zichao Wendy Di, +3 authors, Chris Jacobsen.
J Appl Crystallogr, 2021 May 07; 54(Pt 2). PMID: 33953650    Free PMC article.